Exception Handling in Python

Student’s Name
Department, Institutional Affiliation
Course Number and Name
Professor’s Name

Due Date



Exception Handling in Python

An exception is an error that occurs while executing code and results in an unexpected
outcome. Exception handling is a method of programmatically responding to these
unexpected outcomes, which require special processing (Pierre, 2020). Exception handling in
Python uses a try-except block. Exceptions can be built into a language or custom. The main
aim of exception handling is to prevent potential failures and uncontrolled code crashes.

In Python, all built-in exceptions are derived from the BaseException class. The
Exception class, which is the focus of this paper, directly derives from BaseException.
Common exceptions encountered in day-to-day operations with python include ValueError,
IndexError, TypeError, and NameError. Figure 1 shows which conditions may trigger these
errors. To handle such exceptions, Python provides useful constructs, as shown in Figure 2.
The keywords are explained as follows (Van de Klundert, n.d.):

e {1y block — contains the code monitored for the exceptions.

® except block — contains the code to be executed if a specific exception occurs.
® clse block — it is executed only if no exception occurred in the 7y block.

e finally — it is used for clean-up. This block is always executed.

Figure 3 shows how to implement the exception handling constructs in Python. A user
is required to input two numbers from the output whose sum and division are then calculated,
respectively. If a string, in this case, 3, is inputted, a TypeError is raised. If a zero is inputted,
then a ZeroDivisionError occurs.

An exception is an error that occurs at runtime while a code is running. Exception

handling responds to these errors programmatically and makes the code continue running



without breaking. Hence, every program should have an exception handling mechanism to
ensure robust and non-breaking code.
Figure 1

Common Python Exception

x ipython
Python 3.9.6 (default, Jun 29 2821, 85:25:02)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.25.8 — An enhanced Interactive Python. Type '?' for help.

Traceback (most recent call 1

: invalid literal for int() with base 18: 'ten'

my_list = [1, =, &, 7]

my_list[’]
3

my_list[:]
Traceback {(most recent call 1
my_list
: list index out of range
e
Traceback {most recent call 1
: can only concatenate str (not "int") to str
name =
(Name)
Traceback (most recent call 1
print (Name

: name 'Name' is not defined

Note. Shows ValueError, IndexError, TypeError, and NameError exceptions.



Figure 2

Python Exception Handling Constructs

|/ Execute this code when \I
\  thereis an exception /

\ code. /

Note. try, except, else and finally constructs for exception handling (Van de Klundert, n.d.)



Figure 3

Python Sample Code with Common Exceptions

01-exception-handling-python > g exception_handling.py >

{(input("Enter a number: "))
er number:

print(

print(
ept
print(e)
ot

print(e)
ept

print(e)

stully!™)
finally:
print(

if __name__ ==
main()

TERMINAL

X python exception_handling.py
Enter a number: 2
Enter another number: 4
2/4=0.5
2+4=6
Everything executed successfully!
Executing finally clause
x python exception_handling.py
Enter a number: 3
Enter another number: '3'
invalid literal for int() with base 1@: "'3'"
Executing finally clause
x python exception_handling.py
Enter a number: 3
Enter another number: @
division by zero
Executing finally clause




Note. Python code for ZeroDivisionError, ValueError, and TypeError exceptions together

with their outputs.



References
Pierre, S. (2020, May 15). Exception handling in Python. Towards data science.
https://towardsdatascience.com/exception-handling-in-python-7{639ce9a3d
Van de Klundert, S. (n.d.). Python exceptions: An introduction. Real Python.

https://realpython.com/python-exceptions/



